vllm.benchmarks.serve ¶
Benchmark online serving throughput.
On the server side, run one of the following commands to launch the vLLM OpenAI API server: vllm serve
On the client side, run: vllm bench serve \ --backend
SpecDecodeMetrics dataclass ¶
Speculative decoding metrics from the server's Prometheus endpoint.
Source code in vllm/benchmarks/serve.py
calculate_metrics ¶
calculate_metrics(
input_requests: list[SampleRequest],
outputs: list[RequestFuncOutput],
dur_s: float,
tokenizer: TokenizerLike,
selected_percentiles: list[float],
goodput_config_dict: dict[str, float],
) -> tuple[BenchmarkMetrics, list[int]]
Calculate the metrics for the benchmark.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
input_requests | list[SampleRequest] | The input requests. | required |
outputs | list[RequestFuncOutput] | The outputs of the requests. | required |
dur_s | float | The duration of the benchmark. | required |
tokenizer | TokenizerLike | The tokenizer to use. | required |
selected_percentiles | list[float] | The percentiles to select. | required |
goodput_config_dict | dict[str, float] | The goodput configuration. | required |
Returns:
| Type | Description |
|---|---|
tuple[BenchmarkMetrics, list[int]] | A tuple of the benchmark metrics and the actual output lengths. |
Source code in vllm/benchmarks/serve.py
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 | |
calculate_metrics_for_embeddings ¶
calculate_metrics_for_embeddings(
outputs: list[RequestFuncOutput],
dur_s: float,
selected_percentiles: list[float],
) -> EmbedBenchmarkMetrics
Calculate the metrics for the embedding requests.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
outputs | list[RequestFuncOutput] | The outputs of the requests. | required |
dur_s | float | The duration of the benchmark. | required |
selected_percentiles | list[float] | The percentiles to select. | required |
Returns:
| Type | Description |
|---|---|
EmbedBenchmarkMetrics | The calculated benchmark metrics. |
Source code in vllm/benchmarks/serve.py
fetch_spec_decode_metrics async ¶
fetch_spec_decode_metrics(
base_url: str, session: ClientSession
) -> SpecDecodeMetrics | None
Fetch speculative decoding metrics from the server's Prometheus endpoint.
Returns None if speculative decoding is not enabled or metrics are not available.
Source code in vllm/benchmarks/serve.py
get_first_model_from_server async ¶
get_first_model_from_server(
base_url: str,
headers: dict | None = None,
ssl_context: SSLContext | bool | None = None,
) -> tuple[str, str]
Fetch the first model from the server's /v1/models endpoint.
Source code in vllm/benchmarks/serve.py
get_request async ¶
get_request(
input_requests: list[SampleRequest],
request_rate: float,
burstiness: float = 1.0,
ramp_up_strategy: Literal["linear", "exponential"]
| None = None,
ramp_up_start_rps: int | None = None,
ramp_up_end_rps: int | None = None,
) -> AsyncGenerator[tuple[SampleRequest, float], None]
Asynchronously generates requests at a specified rate with OPTIONAL burstiness and OPTIONAL ramp-up strategy.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
input_requests | list[SampleRequest] | A list of input requests, each represented as a SampleRequest. | required |
request_rate | float | The rate at which requests are generated (requests/s). | required |
burstiness | optional | The burstiness factor of the request generation. Only takes effect when request_rate is not inf. Default value is 1, which follows a Poisson process. Otherwise, the request intervals follow a gamma distribution. A lower burstiness value (0 < burstiness < 1) results in more bursty requests, while a higher burstiness value (burstiness > 1) results in a more uniform arrival of requests. | 1.0 |
ramp_up_strategy | optional | The ramp-up strategy. Can be "linear" or "exponential". If None, uses constant request rate (specified by request_rate). | None |
ramp_up_start_rps | optional | The starting request rate for ramp-up. | None |
ramp_up_end_rps | optional | The ending request rate for ramp-up. | None |
Source code in vllm/benchmarks/serve.py
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 | |