Skip to content

vllm.model_executor.models.qwen3_next

Inference-only Qwen3Next model.

Qwen3NextGatedDeltaNet

Bases: Module, MambaBase

Source code in vllm/model_executor/models/qwen3_next.py
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
class Qwen3NextGatedDeltaNet(nn.Module, MambaBase):
    @property
    def mamba_type(self) -> str:
        return "gdn_attention"

    def get_state_dtype(self) -> tuple[torch.dtype, torch.dtype]:
        return MambaStateDtypeCalculator.gated_delta_net_state_dtype(
            self.model_config.dtype, self.cache_config.mamba_cache_dtype
        )

    def get_state_shape(self) -> tuple[tuple[int, ...], tuple[int, ...]]:
        return MambaStateShapeCalculator.gated_delta_net_state_shape(
            self.tp_size,
            self.num_k_heads,
            self.num_v_heads,
            self.head_k_dim,
            self.head_v_dim,
            self.conv_kernel_size,
            self.num_spec,
        )

    def __init__(
        self,
        config: Qwen3NextConfig,
        model_config: ModelConfig | None = None,
        cache_config: CacheConfig | None = None,
        quant_config: QuantizationConfig | None = None,
        speculative_config: SpeculativeConfig | None = None,
        prefix: str = "",
    ) -> None:
        super().__init__()
        self.tp_size = get_tensor_model_parallel_world_size()
        self.tp_rank = get_tensor_model_parallel_rank()
        self.hidden_size = config.hidden_size
        self.num_v_heads = config.linear_num_value_heads
        self.num_k_heads = config.linear_num_key_heads
        self.head_k_dim = config.linear_key_head_dim
        self.head_v_dim = config.linear_value_head_dim
        self.key_dim = self.head_k_dim * self.num_k_heads
        self.value_dim = self.head_v_dim * self.num_v_heads

        self.conv_kernel_size = config.linear_conv_kernel_dim
        self.layer_idx = extract_layer_index(prefix)
        self.activation = config.hidden_act
        self.act = ACT2FN[config.hidden_act]
        self.layer_norm_epsilon = config.rms_norm_eps
        self.prefix = prefix

        self.config = config
        self.model_config = model_config
        self.cache_config = cache_config
        self.quant_config = quant_config
        self.speculative_config = speculative_config
        self.num_spec = (
            self.speculative_config.num_speculative_tokens
            if self.speculative_config
            else 0
        )

        # QKV
        self.conv_dim = self.key_dim * 2 + self.value_dim
        self.conv1d = ColumnParallelLinear(
            input_size=self.conv_kernel_size,
            output_size=self.conv_dim,
            bias=False,
            prefix=f"{prefix}.conv1d",
        )
        self.conv1d.weight.data = self.conv1d.weight.data.unsqueeze(1)

        # projection of the input hidden states
        self.projection_size_qkvz = self.key_dim * 2 + self.value_dim * 2
        self.projection_size_ba = self.num_v_heads * 2
        self.in_proj_qkvz = ColumnParallelLinear(
            input_size=self.hidden_size,
            output_size=self.projection_size_qkvz,
            bias=False,
            quant_config=quant_config,
            prefix=f"{prefix}.in_proj_qkvz",
        )
        # ba_proj doesn't support blockwise fp8 quantization.
        self.in_proj_ba = ColumnParallelLinear(
            input_size=self.hidden_size,
            output_size=self.projection_size_ba,
            bias=False,
            quant_config=quant_config,
            prefix=f"{prefix}.in_proj_ba",
        )

        query_key_settings = (self.key_dim, 0, False)
        value_settings = (self.value_dim, 0, False)

        delattr(self.conv1d.weight, "weight_loader")
        set_weight_attrs(
            self.conv1d.weight,
            {
                "weight_loader": mamba_v2_sharded_weight_loader(
                    [
                        query_key_settings,
                        query_key_settings,
                        value_settings,
                    ],
                    self.tp_size,
                    self.tp_rank,
                )
            },
        )

        # selective projection used to make dt, B and C input dependant

        # time step projection (discretization)
        # instantiate once and copy inv_dt in init_weights of PretrainedModel
        self.dt_bias = nn.Parameter(
            torch.ones(self.num_v_heads // self.tp_size),
        )
        self.A_log = nn.Parameter(
            torch.empty(
                divide(self.num_v_heads, self.tp_size),
            )
        )

        set_weight_attrs(self.A_log, {"weight_loader": sharded_weight_loader(0)})
        set_weight_attrs(self.dt_bias, {"weight_loader": sharded_weight_loader(0)})

        self.norm = RMSNormGated(
            self.head_v_dim,
            eps=self.layer_norm_epsilon,
            group_size=None,
            norm_before_gate=True,
            device=current_platform.current_device(),
            dtype=config.dtype,
        )

        self.out_proj = RowParallelLinear(
            self.value_dim,
            self.hidden_size,
            bias=False,
            input_is_parallel=True,
            quant_config=quant_config,
            prefix=f"{prefix}.out_proj",
        )

        self.chunk_gated_delta_rule = ChunkGatedDeltaRule()

        compilation_config = get_current_vllm_config().compilation_config
        if prefix in compilation_config.static_forward_context:
            raise ValueError(f"Duplicate layer name: {prefix}")
        compilation_config.static_forward_context[prefix] = self

    def fix_query_key_value_ordering(
        self,
        mixed_qkvz,
        mixed_ba,
    ):
        """
        Derives `query`, `key` and `value` tensors from `mixed_qkvzba`.
        """
        new_tensor_shape_qkvz = mixed_qkvz.size()[:-1] + (
            self.num_k_heads // self.tp_size,
            (
                self.head_k_dim
                + self.head_k_dim
                + (self.head_v_dim + self.head_v_dim)
                * self.num_v_heads
                // self.num_k_heads
            ),
        )
        new_tensor_shape_ba = mixed_qkvz.size()[:-1] + (
            self.num_k_heads // self.tp_size,
            2 * self.num_v_heads // self.num_k_heads,
        )

        mixed_qkvz = mixed_qkvz.view(*new_tensor_shape_qkvz)
        mixed_ba = mixed_ba.view(*new_tensor_shape_ba)

        split_arg_list_qkvz = [
            self.head_k_dim,
            self.head_k_dim,
            (self.num_v_heads // self.num_k_heads * self.head_v_dim),
            (self.num_v_heads // self.num_k_heads * self.head_v_dim),
        ]
        split_arg_list_ba = [
            self.num_v_heads // self.num_k_heads,
            self.num_v_heads // self.num_k_heads,
        ]

        # [b, sq, ng, (hn + hn + np/ng * hn + np/ng + np/ng)]
        # --> [b, sq, ng, hn], [b, sq, ng, hn], [b, sq, ng, np/ng * hn],
        #  [b, sq, ng, np/ng * hn], [b, sq, ng, np/ng], [b, sq, ng, np/ng]
        (query, key, value, z) = torch.split(mixed_qkvz, split_arg_list_qkvz, dim=2)
        (b, a) = torch.split(mixed_ba, split_arg_list_ba, dim=2)

        # [b, sq, ng, np/ng * hn] -> [b, sq, np, hn]
        value = value.reshape(value.size(0), -1, self.head_v_dim)
        z = z.reshape(z.size(0), -1, self.head_v_dim)
        b = b.reshape(b.size(0), self.num_v_heads // self.tp_size)
        a = a.reshape(a.size(0), self.num_v_heads // self.tp_size)

        return query, key, value, z, b, a

    def rearrange_mixed_qkv(self, mixed_qkv):
        if mixed_qkv is None:
            return None, None, None
        query, key, value = torch.split(
            mixed_qkv,
            [
                self.key_dim // self.tp_size,
                self.key_dim // self.tp_size,
                self.value_dim // self.tp_size,
            ],
            dim=-1,
        )
        query, key = map(
            lambda x: rearrange(x, "l (h d) -> 1 l h d", d=self.head_k_dim),
            (query, key),
        )
        value = rearrange(value, "l (h d) -> 1 l h d", d=self.head_v_dim)
        return query.contiguous(), key.contiguous(), value.contiguous()

    def forward(
        self,
        hidden_states: torch.Tensor,
        output: torch.Tensor,
    ):
        """
        Forward pass with three parts:
        1. Input projection
        2. Core attention (custom op)
        3. Output projection
        """
        num_tokens = hidden_states.size(0)

        # ============================================================
        # Part 1: Input Projection
        # ============================================================
        projected_states_qkvz, _ = self.in_proj_qkvz(hidden_states)
        projected_states_ba, _ = self.in_proj_ba(hidden_states)
        query, key, value, z, b, a = self.fix_query_key_value_ordering(
            projected_states_qkvz, projected_states_ba
        )
        query, key, value = map(
            lambda x: rearrange(x, "l p d -> l (p d)"), (query, key, value)
        )
        mixed_qkv = torch.cat((query, key, value), dim=-1)

        # ============================================================
        # Part 2: Core Attention (Custom Op)
        # ============================================================
        # Note: we should not use torch.empty here like other attention backends,
        # see discussions in https://github.com/vllm-project/vllm/pull/28182
        core_attn_out = torch.zeros(
            (num_tokens, self.num_v_heads // self.tp_size, self.head_v_dim),
            dtype=hidden_states.dtype,
            device=hidden_states.device,
        )

        torch.ops.vllm.gdn_attention_core(
            mixed_qkv,
            b,
            a,
            core_attn_out,
            self.prefix,
        )

        # ============================================================
        # Part 3: Output Projection
        # ============================================================
        z_shape_og = z.shape
        # Reshape input data into 2D tensor
        core_attn_out = core_attn_out.reshape(-1, core_attn_out.shape[-1])
        z = z.reshape(-1, z.shape[-1])
        core_attn_out = self.norm(core_attn_out, z)
        core_attn_out = core_attn_out.reshape(z_shape_og)
        core_attn_out = rearrange(core_attn_out, "... h d -> ... (h d)")
        output[:num_tokens], _ = self.out_proj(core_attn_out)

    def _forward_core(
        self,
        mixed_qkv: torch.Tensor,
        b: torch.Tensor,
        a: torch.Tensor,
        core_attn_out: torch.Tensor,
    ):
        """
        Core attention computation (called by custom op).
        """
        forward_context = get_forward_context()
        attn_metadata: AttentionMetadata = forward_context.attn_metadata

        if attn_metadata is None:
            # V1 profile run
            return

        assert isinstance(attn_metadata, dict)
        attn_metadata = attn_metadata[self.prefix]
        assert isinstance(attn_metadata, GDNAttentionMetadata)
        has_initial_state = attn_metadata.has_initial_state
        spec_query_start_loc = attn_metadata.spec_query_start_loc
        non_spec_query_start_loc = attn_metadata.non_spec_query_start_loc
        spec_sequence_masks = attn_metadata.spec_sequence_masks
        spec_token_indx = attn_metadata.spec_token_indx
        non_spec_token_indx = attn_metadata.non_spec_token_indx
        spec_state_indices_tensor = attn_metadata.spec_state_indices_tensor  # noqa: E501
        non_spec_state_indices_tensor = attn_metadata.non_spec_state_indices_tensor  # noqa: E501
        self_kv_cache = self.kv_cache[forward_context.virtual_engine]
        conv_state = self_kv_cache[0].transpose(-1, -2)
        ssm_state = self_kv_cache[1]
        num_actual_tokens = attn_metadata.num_actual_tokens
        num_accepted_tokens = attn_metadata.num_accepted_tokens

        mixed_qkv = mixed_qkv[:num_actual_tokens]
        b = b[:num_actual_tokens]
        a = a[:num_actual_tokens]

        # 1. Convolution sequence transformation
        conv_weights = self.conv1d.weight.view(
            self.conv1d.weight.size(0), self.conv1d.weight.size(2)
        )

        if spec_sequence_masks is not None:
            if attn_metadata.num_prefills == 0 and attn_metadata.num_decodes == 0:
                mixed_qkv_spec = mixed_qkv
                mixed_qkv_non_spec = None
            else:
                mixed_qkv_spec = mixed_qkv.index_select(0, spec_token_indx)
                mixed_qkv_non_spec = mixed_qkv.index_select(0, non_spec_token_indx)
        else:
            mixed_qkv_spec = None
            mixed_qkv_non_spec = mixed_qkv

        # 1.1: Process the multi-query part
        if spec_sequence_masks is not None:
            mixed_qkv_spec = causal_conv1d_update(
                mixed_qkv_spec,
                conv_state,
                conv_weights,
                self.conv1d.bias,
                self.activation,
                conv_state_indices=spec_state_indices_tensor[:, 0][
                    : attn_metadata.num_spec_decodes
                ],
                num_accepted_tokens=num_accepted_tokens,
                query_start_loc=spec_query_start_loc,
                max_query_len=spec_state_indices_tensor.size(-1),
                validate_data=False,
            )

        # 1.2: Process the remaining part
        if attn_metadata.num_prefills > 0:
            mixed_qkv_non_spec_T = mixed_qkv_non_spec.transpose(0, 1)
            # - "cache_indices" updates the conv_state cache in positions
            #   pointed to by "state_indices_tensor"
            mixed_qkv_non_spec = causal_conv1d_fn(
                mixed_qkv_non_spec_T,
                conv_weights,
                self.conv1d.bias,
                activation=self.activation,
                conv_states=conv_state,
                has_initial_state=has_initial_state,
                cache_indices=non_spec_state_indices_tensor,
                query_start_loc=non_spec_query_start_loc,
                metadata=attn_metadata,
            ).transpose(0, 1)
        elif attn_metadata.num_decodes > 0:
            mixed_qkv_non_spec = causal_conv1d_update(
                mixed_qkv_non_spec,
                conv_state,
                conv_weights,
                self.conv1d.bias,
                self.activation,
                conv_state_indices=non_spec_state_indices_tensor[
                    : attn_metadata.num_actual_tokens
                ],
                validate_data=True,
            )
        else:
            mixed_qkv_non_spec = None

        query_spec, key_spec, value_spec = self.rearrange_mixed_qkv(mixed_qkv_spec)
        query_non_spec, key_non_spec, value_non_spec = self.rearrange_mixed_qkv(
            mixed_qkv_non_spec
        )

        g, beta = fused_gdn_gating(self.A_log, a, b, self.dt_bias)

        if spec_sequence_masks is not None:
            if attn_metadata.num_prefills == 0 and attn_metadata.num_decodes == 0:
                g_spec = g
                beta_spec = beta
                g_non_spec = None
                beta_non_spec = None
            else:
                g_spec = g.index_select(1, spec_token_indx)
                beta_spec = beta.index_select(1, spec_token_indx)
                g_non_spec = g.index_select(1, non_spec_token_indx)
                beta_non_spec = beta.index_select(1, non_spec_token_indx)
        else:
            g_spec = None
            beta_spec = None
            g_non_spec = g
            beta_non_spec = beta

        # 2. Recurrent attention

        # 2.1: Process the multi-query part
        if spec_sequence_masks is not None:
            core_attn_out_spec, last_recurrent_state = fused_recurrent_gated_delta_rule(
                q=query_spec,
                k=key_spec,
                v=value_spec,
                g=g_spec,
                beta=beta_spec,
                initial_state=ssm_state,
                inplace_final_state=True,
                cu_seqlens=spec_query_start_loc[: attn_metadata.num_spec_decodes + 1],
                ssm_state_indices=spec_state_indices_tensor,
                num_accepted_tokens=num_accepted_tokens,
                use_qk_l2norm_in_kernel=True,
            )
        else:
            core_attn_out_spec, last_recurrent_state = None, None

        # 2.2: Process the remaining part
        if attn_metadata.num_prefills > 0:
            initial_state = ssm_state[non_spec_state_indices_tensor].contiguous()
            initial_state[~has_initial_state, ...] = 0
            (
                core_attn_out_non_spec,
                last_recurrent_state,
            ) = self.chunk_gated_delta_rule(
                q=query_non_spec,
                k=key_non_spec,
                v=value_non_spec,
                g=g_non_spec,
                beta=beta_non_spec,
                initial_state=initial_state,
                output_final_state=True,
                cu_seqlens=non_spec_query_start_loc,
                head_first=False,
                use_qk_l2norm_in_kernel=True,
            )
            # Init cache
            ssm_state[non_spec_state_indices_tensor] = last_recurrent_state.to(
                ssm_state.dtype
            )
        elif attn_metadata.num_decodes > 0:
            core_attn_out_non_spec, last_recurrent_state = (
                fused_recurrent_gated_delta_rule(
                    q=query_non_spec,
                    k=key_non_spec,
                    v=value_non_spec,
                    g=g_non_spec,
                    beta=beta_non_spec,
                    initial_state=ssm_state,
                    inplace_final_state=True,
                    cu_seqlens=non_spec_query_start_loc[
                        : attn_metadata.num_decodes + 1
                    ],
                    ssm_state_indices=non_spec_state_indices_tensor,
                    use_qk_l2norm_in_kernel=True,
                )
            )
        else:
            core_attn_out_non_spec, last_recurrent_state = None, None

        # 3. Merge core attention output
        if spec_sequence_masks is not None and core_attn_out_non_spec is not None:
            merged_out = torch.empty(
                (1, num_actual_tokens, *core_attn_out_spec.shape[2:]),
                dtype=core_attn_out_non_spec.dtype,
                device=core_attn_out_non_spec.device,
            )
            merged_out.index_copy_(1, spec_token_indx, core_attn_out_spec)
            merged_out.index_copy_(1, non_spec_token_indx, core_attn_out_non_spec)
            core_attn_out[:num_actual_tokens] = merged_out.squeeze(0)
        elif spec_sequence_masks is not None:
            core_attn_out[:num_actual_tokens] = core_attn_out_spec.squeeze(0)
        else:
            core_attn_out[:num_actual_tokens] = core_attn_out_non_spec.squeeze(0)

_forward_core

_forward_core(
    mixed_qkv: Tensor,
    b: Tensor,
    a: Tensor,
    core_attn_out: Tensor,
)

Core attention computation (called by custom op).

Source code in vllm/model_executor/models/qwen3_next.py
def _forward_core(
    self,
    mixed_qkv: torch.Tensor,
    b: torch.Tensor,
    a: torch.Tensor,
    core_attn_out: torch.Tensor,
):
    """
    Core attention computation (called by custom op).
    """
    forward_context = get_forward_context()
    attn_metadata: AttentionMetadata = forward_context.attn_metadata

    if attn_metadata is None:
        # V1 profile run
        return

    assert isinstance(attn_metadata, dict)
    attn_metadata = attn_metadata[self.prefix]
    assert isinstance(attn_metadata, GDNAttentionMetadata)
    has_initial_state = attn_metadata.has_initial_state
    spec_query_start_loc = attn_metadata.spec_query_start_loc
    non_spec_query_start_loc = attn_metadata.non_spec_query_start_loc
    spec_sequence_masks = attn_metadata.spec_sequence_masks
    spec_token_indx = attn_metadata.spec_token_indx
    non_spec_token_indx = attn_metadata.non_spec_token_indx
    spec_state_indices_tensor = attn_metadata.spec_state_indices_tensor  # noqa: E501
    non_spec_state_indices_tensor = attn_metadata.non_spec_state_indices_tensor  # noqa: E501
    self_kv_cache = self.kv_cache[forward_context.virtual_engine]
    conv_state = self_kv_cache[0].transpose(-1, -2)
    ssm_state = self_kv_cache[1]
    num_actual_tokens = attn_metadata.num_actual_tokens
    num_accepted_tokens = attn_metadata.num_accepted_tokens

    mixed_qkv = mixed_qkv[:num_actual_tokens]
    b = b[:num_actual_tokens]
    a = a[:num_actual_tokens]

    # 1. Convolution sequence transformation
    conv_weights = self.conv1d.weight.view(
        self.conv1d.weight.size(0), self.conv1d.weight.size(2)
    )

    if spec_sequence_masks is not None:
        if attn_metadata.num_prefills == 0 and attn_metadata.num_decodes == 0:
            mixed_qkv_spec = mixed_qkv
            mixed_qkv_non_spec = None
        else:
            mixed_qkv_spec = mixed_qkv.index_select(0, spec_token_indx)
            mixed_qkv_non_spec = mixed_qkv.index_select(0, non_spec_token_indx)
    else:
        mixed_qkv_spec = None
        mixed_qkv_non_spec = mixed_qkv

    # 1.1: Process the multi-query part
    if spec_sequence_masks is not None:
        mixed_qkv_spec = causal_conv1d_update(
            mixed_qkv_spec,
            conv_state,
            conv_weights,
            self.conv1d.bias,
            self.activation,
            conv_state_indices=spec_state_indices_tensor[:, 0][
                : attn_metadata.num_spec_decodes
            ],
            num_accepted_tokens=num_accepted_tokens,
            query_start_loc=spec_query_start_loc,
            max_query_len=spec_state_indices_tensor.size(-1),
            validate_data=False,
        )

    # 1.2: Process the remaining part
    if attn_metadata.num_prefills > 0:
        mixed_qkv_non_spec_T = mixed_qkv_non_spec.transpose(0, 1)
        # - "cache_indices" updates the conv_state cache in positions
        #   pointed to by "state_indices_tensor"
        mixed_qkv_non_spec = causal_conv1d_fn(
            mixed_qkv_non_spec_T,
            conv_weights,
            self.conv1d.bias,
            activation=self.activation,
            conv_states=conv_state,
            has_initial_state=has_initial_state,
            cache_indices=non_spec_state_indices_tensor,
            query_start_loc=non_spec_query_start_loc,
            metadata=attn_metadata,
        ).transpose(0, 1)
    elif attn_metadata.num_decodes > 0:
        mixed_qkv_non_spec = causal_conv1d_update(
            mixed_qkv_non_spec,
            conv_state,
            conv_weights,
            self.conv1d.bias,
            self.activation,
            conv_state_indices=non_spec_state_indices_tensor[
                : attn_metadata.num_actual_tokens
            ],
            validate_data=True,
        )
    else:
        mixed_qkv_non_spec = None

    query_spec, key_spec, value_spec = self.rearrange_mixed_qkv(mixed_qkv_spec)
    query_non_spec, key_non_spec, value_non_spec = self.rearrange_mixed_qkv(
        mixed_qkv_non_spec
    )

    g, beta = fused_gdn_gating(self.A_log, a, b, self.dt_bias)

    if spec_sequence_masks is not None:
        if attn_metadata.num_prefills == 0 and attn_metadata.num_decodes == 0:
            g_spec = g
            beta_spec = beta
            g_non_spec = None
            beta_non_spec = None
        else:
            g_spec = g.index_select(1, spec_token_indx)
            beta_spec = beta.index_select(1, spec_token_indx)
            g_non_spec = g.index_select(1, non_spec_token_indx)
            beta_non_spec = beta.index_select(1, non_spec_token_indx)
    else:
        g_spec = None
        beta_spec = None
        g_non_spec = g
        beta_non_spec = beta

    # 2. Recurrent attention

    # 2.1: Process the multi-query part
    if spec_sequence_masks is not None:
        core_attn_out_spec, last_recurrent_state = fused_recurrent_gated_delta_rule(
            q=query_spec,
            k=key_spec,
            v=value_spec,
            g=g_spec,
            beta=beta_spec,
            initial_state=ssm_state,
            inplace_final_state=True,
            cu_seqlens=spec_query_start_loc[: attn_metadata.num_spec_decodes + 1],
            ssm_state_indices=spec_state_indices_tensor,
            num_accepted_tokens=num_accepted_tokens,
            use_qk_l2norm_in_kernel=True,
        )
    else:
        core_attn_out_spec, last_recurrent_state = None, None

    # 2.2: Process the remaining part
    if attn_metadata.num_prefills > 0:
        initial_state = ssm_state[non_spec_state_indices_tensor].contiguous()
        initial_state[~has_initial_state, ...] = 0
        (
            core_attn_out_non_spec,
            last_recurrent_state,
        ) = self.chunk_gated_delta_rule(
            q=query_non_spec,
            k=key_non_spec,
            v=value_non_spec,
            g=g_non_spec,
            beta=beta_non_spec,
            initial_state=initial_state,
            output_final_state=True,
            cu_seqlens=non_spec_query_start_loc,
            head_first=False,
            use_qk_l2norm_in_kernel=True,
        )
        # Init cache
        ssm_state[non_spec_state_indices_tensor] = last_recurrent_state.to(
            ssm_state.dtype
        )
    elif attn_metadata.num_decodes > 0:
        core_attn_out_non_spec, last_recurrent_state = (
            fused_recurrent_gated_delta_rule(
                q=query_non_spec,
                k=key_non_spec,
                v=value_non_spec,
                g=g_non_spec,
                beta=beta_non_spec,
                initial_state=ssm_state,
                inplace_final_state=True,
                cu_seqlens=non_spec_query_start_loc[
                    : attn_metadata.num_decodes + 1
                ],
                ssm_state_indices=non_spec_state_indices_tensor,
                use_qk_l2norm_in_kernel=True,
            )
        )
    else:
        core_attn_out_non_spec, last_recurrent_state = None, None

    # 3. Merge core attention output
    if spec_sequence_masks is not None and core_attn_out_non_spec is not None:
        merged_out = torch.empty(
            (1, num_actual_tokens, *core_attn_out_spec.shape[2:]),
            dtype=core_attn_out_non_spec.dtype,
            device=core_attn_out_non_spec.device,
        )
        merged_out.index_copy_(1, spec_token_indx, core_attn_out_spec)
        merged_out.index_copy_(1, non_spec_token_indx, core_attn_out_non_spec)
        core_attn_out[:num_actual_tokens] = merged_out.squeeze(0)
    elif spec_sequence_masks is not None:
        core_attn_out[:num_actual_tokens] = core_attn_out_spec.squeeze(0)
    else:
        core_attn_out[:num_actual_tokens] = core_attn_out_non_spec.squeeze(0)

fix_query_key_value_ordering

fix_query_key_value_ordering(mixed_qkvz, mixed_ba)

Derives query, key and value tensors from mixed_qkvzba.

Source code in vllm/model_executor/models/qwen3_next.py
def fix_query_key_value_ordering(
    self,
    mixed_qkvz,
    mixed_ba,
):
    """
    Derives `query`, `key` and `value` tensors from `mixed_qkvzba`.
    """
    new_tensor_shape_qkvz = mixed_qkvz.size()[:-1] + (
        self.num_k_heads // self.tp_size,
        (
            self.head_k_dim
            + self.head_k_dim
            + (self.head_v_dim + self.head_v_dim)
            * self.num_v_heads
            // self.num_k_heads
        ),
    )
    new_tensor_shape_ba = mixed_qkvz.size()[:-1] + (
        self.num_k_heads // self.tp_size,
        2 * self.num_v_heads // self.num_k_heads,
    )

    mixed_qkvz = mixed_qkvz.view(*new_tensor_shape_qkvz)
    mixed_ba = mixed_ba.view(*new_tensor_shape_ba)

    split_arg_list_qkvz = [
        self.head_k_dim,
        self.head_k_dim,
        (self.num_v_heads // self.num_k_heads * self.head_v_dim),
        (self.num_v_heads // self.num_k_heads * self.head_v_dim),
    ]
    split_arg_list_ba = [
        self.num_v_heads // self.num_k_heads,
        self.num_v_heads // self.num_k_heads,
    ]

    # [b, sq, ng, (hn + hn + np/ng * hn + np/ng + np/ng)]
    # --> [b, sq, ng, hn], [b, sq, ng, hn], [b, sq, ng, np/ng * hn],
    #  [b, sq, ng, np/ng * hn], [b, sq, ng, np/ng], [b, sq, ng, np/ng]
    (query, key, value, z) = torch.split(mixed_qkvz, split_arg_list_qkvz, dim=2)
    (b, a) = torch.split(mixed_ba, split_arg_list_ba, dim=2)

    # [b, sq, ng, np/ng * hn] -> [b, sq, np, hn]
    value = value.reshape(value.size(0), -1, self.head_v_dim)
    z = z.reshape(z.size(0), -1, self.head_v_dim)
    b = b.reshape(b.size(0), self.num_v_heads // self.tp_size)
    a = a.reshape(a.size(0), self.num_v_heads // self.tp_size)

    return query, key, value, z, b, a

forward

forward(hidden_states: Tensor, output: Tensor)

Forward pass with three parts: 1. Input projection 2. Core attention (custom op) 3. Output projection

Source code in vllm/model_executor/models/qwen3_next.py
def forward(
    self,
    hidden_states: torch.Tensor,
    output: torch.Tensor,
):
    """
    Forward pass with three parts:
    1. Input projection
    2. Core attention (custom op)
    3. Output projection
    """
    num_tokens = hidden_states.size(0)

    # ============================================================
    # Part 1: Input Projection
    # ============================================================
    projected_states_qkvz, _ = self.in_proj_qkvz(hidden_states)
    projected_states_ba, _ = self.in_proj_ba(hidden_states)
    query, key, value, z, b, a = self.fix_query_key_value_ordering(
        projected_states_qkvz, projected_states_ba
    )
    query, key, value = map(
        lambda x: rearrange(x, "l p d -> l (p d)"), (query, key, value)
    )
    mixed_qkv = torch.cat((query, key, value), dim=-1)

    # ============================================================
    # Part 2: Core Attention (Custom Op)
    # ============================================================
    # Note: we should not use torch.empty here like other attention backends,
    # see discussions in https://github.com/vllm-project/vllm/pull/28182
    core_attn_out = torch.zeros(
        (num_tokens, self.num_v_heads // self.tp_size, self.head_v_dim),
        dtype=hidden_states.dtype,
        device=hidden_states.device,
    )

    torch.ops.vllm.gdn_attention_core(
        mixed_qkv,
        b,
        a,
        core_attn_out,
        self.prefix,
    )

    # ============================================================
    # Part 3: Output Projection
    # ============================================================
    z_shape_og = z.shape
    # Reshape input data into 2D tensor
    core_attn_out = core_attn_out.reshape(-1, core_attn_out.shape[-1])
    z = z.reshape(-1, z.shape[-1])
    core_attn_out = self.norm(core_attn_out, z)
    core_attn_out = core_attn_out.reshape(z_shape_og)
    core_attn_out = rearrange(core_attn_out, "... h d -> ... (h d)")
    output[:num_tokens], _ = self.out_proj(core_attn_out)

fused_gdn_gating

fused_gdn_gating(
    A_log: Tensor,
    a: Tensor,
    b: Tensor,
    dt_bias: Tensor,
    beta: float = 1.0,
    threshold: float = 20.0,
) -> tuple[Tensor, Tensor]

Fused computation of g and beta for Gated Delta Net. g = -self.A_log.float().exp() * F.softplus(a.float() + self.dt_bias) beta_output = b.sigmoid() TODO maybe use torch.compile to replace this triton kernel

Source code in vllm/model_executor/models/qwen3_next.py
def fused_gdn_gating(
    A_log: torch.Tensor,
    a: torch.Tensor,
    b: torch.Tensor,
    dt_bias: torch.Tensor,
    beta: float = 1.0,
    threshold: float = 20.0,
) -> tuple[torch.Tensor, torch.Tensor]:
    """
    Fused computation of g and beta for Gated Delta Net.
    g = -self.A_log.float().exp() * F.softplus(a.float() + self.dt_bias)
    beta_output = b.sigmoid()
    TODO maybe use torch.compile to replace this triton kernel
    """
    batch, num_heads = a.shape
    seq_len = 1
    grid = (batch, seq_len, triton.cdiv(num_heads, 8))
    g = torch.empty(1, batch, num_heads, dtype=torch.float32, device=a.device)
    beta_output = torch.empty(1, batch, num_heads, dtype=b.dtype, device=b.device)
    fused_gdn_gating_kernel[grid](
        g,
        beta_output,
        A_log,
        a,
        b,
        dt_bias,
        seq_len,
        num_heads,
        beta,
        threshold,
        8,
        num_warps=1,
    )
    return g, beta_output

gdn_attention_core

gdn_attention_core(
    mixed_qkv: Tensor,
    b: Tensor,
    a: Tensor,
    core_attn_out: Tensor,
    layer_name: str,
) -> None

Custom op for the core attention computation. Only handles the convolution + recurrent attention part. Input/output projections are handled outside this op.

Source code in vllm/model_executor/models/qwen3_next.py
def gdn_attention_core(
    mixed_qkv: torch.Tensor,
    b: torch.Tensor,
    a: torch.Tensor,
    core_attn_out: torch.Tensor,
    layer_name: str,
) -> None:
    """
    Custom op for the core attention computation.
    Only handles the convolution + recurrent attention part.
    Input/output projections are handled outside this op.
    """
    forward_context: ForwardContext = get_forward_context()
    self = forward_context.no_compile_layers[layer_name]
    self._forward_core(
        mixed_qkv=mixed_qkv,
        b=b,
        a=a,
        core_attn_out=core_attn_out,
    )

gdn_attention_core_fake

gdn_attention_core_fake(
    mixed_qkv: Tensor,
    b: Tensor,
    a: Tensor,
    core_attn_out: Tensor,
    layer_name: str,
) -> None

Fake implementation for torch.compile.

Source code in vllm/model_executor/models/qwen3_next.py
def gdn_attention_core_fake(
    mixed_qkv: torch.Tensor,
    b: torch.Tensor,
    a: torch.Tensor,
    core_attn_out: torch.Tensor,
    layer_name: str,
) -> None:
    """Fake implementation for torch.compile."""
    return