Skip to content

vllm.tool_parsers.olmo3_tool_parser

Olmo3PythonicToolParser

Bases: ToolParser

Tool call parser for Olmo 3 models that produce tool calls as newline-separated pythonic strings. Used when --enable-auto-tool-choice --tool-call-parser pythonic are all set Code copied from pythonic_tool_parser.py and updated to handle - newline separated pythonic tool calls. - argument values being null/true/false instead of Pythonic literals.

Source code in vllm/tool_parsers/olmo3_tool_parser.py
class Olmo3PythonicToolParser(ToolParser):
    """
    Tool call parser for Olmo 3 models that produce tool calls as
    newline-separated pythonic strings.
    Used when --enable-auto-tool-choice --tool-call-parser pythonic are all set
    Code copied from pythonic_tool_parser.py and updated to handle
    - newline separated pythonic tool calls.
    - argument values being null/true/false instead of Pythonic literals.
    """

    # TODO(mdepinet): Possible future improvements:
    #   1. Support text + tools separated by either <|python_tag|> or \n\n
    #   2. Support tools outside of a list (or separated by a semicolon).
    #      This depends on item 1 for consistent streaming.
    # Neither of these are necessary for e.g. ToolACE, but both would help make
    # Llama3.2 models more reliable.

    TOOL_CALL_REGEX = re.compile(
        r"\[([a-zA-Z]+\w*\(([a-zA-Z]+\w*=.*,\s*)*([a-zA-Z]+\w*=.*\s)?\),\s*)*([a-zA-Z]+\w*\(([a-zA-Z]+\w*=.*,\s*)*([a-zA-Z]+\w*=.*\s*)?\)\s*)+\]",
        re.DOTALL,
    )

    def __init__(self, tokenizer: PreTrainedTokenizerBase):
        super().__init__(tokenizer)

    # Rename for readability. This is NOT a tool id.
    @property
    def current_tool_index(self) -> int:
        return self.current_tool_id

    @current_tool_index.setter
    def current_tool_index(self, value: int) -> None:
        self.current_tool_id = value

    def extract_tool_calls(
        self, model_output: str, request: ChatCompletionRequest
    ) -> ExtractedToolCallInformation:
        """
        Extract the tool calls from a complete model response.
        """
        original_model_output = model_output
        # Remove xml tags.
        match = re.search(
            r"<function_calls>(.*?)</function_calls>", model_output, re.DOTALL
        )
        if match:
            model_output = match.group(1).strip()
        # Make the newline separated function calls into a list.
        model_output = ", ".join(
            [line.strip() for line in model_output.splitlines() if line.strip()]
        )
        model_output = f"[{model_output}]"

        is_tool_call_pattern = False
        try:
            is_tool_call_pattern = (
                self.TOOL_CALL_REGEX.match(
                    model_output, timeout=envs.VLLM_TOOL_PARSE_REGEX_TIMEOUT_SECONDS
                )
                is not None
            )
        except TimeoutError:
            logger.warning("Regex timeout occurred when matching tool call pattern.")
            logger.debug(
                "Regex timeout occurred when matching user input: %s", model_output
            )

        if not is_tool_call_pattern:
            return ExtractedToolCallInformation(
                tools_called=False, tool_calls=[], content=original_model_output
            )

        try:
            module = ast.parse(model_output)
            parsed = getattr(module.body[0], "value", None)
            if isinstance(parsed, ast.List) and all(
                isinstance(e, ast.Call) for e in parsed.elts
            ):
                return ExtractedToolCallInformation(
                    tools_called=True,
                    tool_calls=[
                        _handle_single_tool(e)  # type: ignore
                        for e in parsed.elts
                    ],
                    content=None,
                )
            else:
                raise _UnexpectedAstError(
                    "Tool output must be a list of function calls"
                )
        except Exception:
            logger.exception("Error in extracting tool call from response.")
            # Treat as regular text
            return ExtractedToolCallInformation(
                tools_called=False, tool_calls=[], content=original_model_output
            )

    def extract_tool_calls_streaming(
        self,
        previous_text: str,
        current_text: str,
        delta_text: str,
        previous_token_ids: Sequence[int],
        current_token_ids: Sequence[int],
        delta_token_ids: Sequence[int],
        request: ChatCompletionRequest,
    ) -> DeltaMessage | None:
        # All function calls start with the <function_calls> tag.
        # But since this is streaming, we may have seen only part of the tag.
        if not current_text.startswith("<"):
            return DeltaMessage(content=delta_text)

        try:
            # Remove xml tags.
            if current_text.startswith("<function_calls>"):
                current_text = current_text[len("<function_calls>") :]
            if current_text.endswith("</function_calls>"):
                current_text = current_text[: -len("</function_calls>")]

            valid_and_added_text = _make_valid_python(current_text)
            if valid_and_added_text is None:
                return None
            valid_text, added_text = valid_and_added_text

            # Make the newline separated function calls into a list.
            valid_text = ", ".join(
                [line.strip() for line in valid_text.splitlines() if line.strip()]
            )
            valid_text = f"[{valid_text}]"
            module = ast.parse(valid_text)
            parsed = getattr(module.body[0], "value", None)
            if not isinstance(parsed, ast.List) or not all(
                isinstance(e, ast.Call) for e in parsed.elts
            ):
                raise _UnexpectedAstError(
                    "Tool output must be a sequence of newline-separated calls"
                )
            tool_calls = [
                _handle_single_tool(e)  # type: ignore
                for e in parsed.elts
            ]

            tool_deltas = []
            for index, new_call in enumerate(tool_calls):
                if index < self.current_tool_index:
                    continue

                self.current_tool_index = index
                if len(self.streamed_args_for_tool) == index:
                    self.streamed_args_for_tool.append("")

                new_call_complete = index < len(tool_calls) - 1 or ")" not in added_text
                if new_call_complete:
                    self.current_tool_index += 1

                withheld_suffix = added_text[:-1] if not new_call_complete else ""
                if not new_call_complete and added_text[-1] == ")":
                    # Function call is incomplete. Withhold the closing bracket.
                    withheld_suffix = withheld_suffix + "}"
                # Strings get single quotes in the model-produced string.
                # JSON requires double quotes.
                withheld_suffix = withheld_suffix.replace("'", '"')
                delta = _compute_tool_delta(
                    self.streamed_args_for_tool[index], new_call, index, withheld_suffix
                )

                if delta is not None:
                    tool_deltas.append(delta)
                    if (
                        delta.function is not None
                        and delta.function.arguments is not None
                    ):
                        self.streamed_args_for_tool[index] += delta.function.arguments

            # HACK: serving_chat.py inspects the internal state of tool parsers
            # when determining its final streaming delta, automatically
            # adding autocompleted JSON.
            # These two lines avoid that nonsense while ensuring finish_reason
            # is set to tool_calls when at least one tool is called.
            if tool_deltas and not self.prev_tool_call_arr:
                self.prev_tool_call_arr = [{"arguments": {}}]

            if tool_deltas:
                return DeltaMessage(tool_calls=tool_deltas)
            elif not added_text and self.current_tool_id > 0:
                # Return an empty DeltaMessage once the tool calls are all done
                # so that finish_reason gets set.
                return DeltaMessage(content="")
            else:
                return None
        except Exception:
            logger.exception("Error trying to handle streaming tool call.")
            logger.debug(
                "Skipping chunk as a result of tool streaming extraction error"
            )
            return None

extract_tool_calls

extract_tool_calls(
    model_output: str, request: ChatCompletionRequest
) -> ExtractedToolCallInformation

Extract the tool calls from a complete model response.

Source code in vllm/tool_parsers/olmo3_tool_parser.py
def extract_tool_calls(
    self, model_output: str, request: ChatCompletionRequest
) -> ExtractedToolCallInformation:
    """
    Extract the tool calls from a complete model response.
    """
    original_model_output = model_output
    # Remove xml tags.
    match = re.search(
        r"<function_calls>(.*?)</function_calls>", model_output, re.DOTALL
    )
    if match:
        model_output = match.group(1).strip()
    # Make the newline separated function calls into a list.
    model_output = ", ".join(
        [line.strip() for line in model_output.splitlines() if line.strip()]
    )
    model_output = f"[{model_output}]"

    is_tool_call_pattern = False
    try:
        is_tool_call_pattern = (
            self.TOOL_CALL_REGEX.match(
                model_output, timeout=envs.VLLM_TOOL_PARSE_REGEX_TIMEOUT_SECONDS
            )
            is not None
        )
    except TimeoutError:
        logger.warning("Regex timeout occurred when matching tool call pattern.")
        logger.debug(
            "Regex timeout occurred when matching user input: %s", model_output
        )

    if not is_tool_call_pattern:
        return ExtractedToolCallInformation(
            tools_called=False, tool_calls=[], content=original_model_output
        )

    try:
        module = ast.parse(model_output)
        parsed = getattr(module.body[0], "value", None)
        if isinstance(parsed, ast.List) and all(
            isinstance(e, ast.Call) for e in parsed.elts
        ):
            return ExtractedToolCallInformation(
                tools_called=True,
                tool_calls=[
                    _handle_single_tool(e)  # type: ignore
                    for e in parsed.elts
                ],
                content=None,
            )
        else:
            raise _UnexpectedAstError(
                "Tool output must be a list of function calls"
            )
    except Exception:
        logger.exception("Error in extracting tool call from response.")
        # Treat as regular text
        return ExtractedToolCallInformation(
            tools_called=False, tool_calls=[], content=original_model_output
        )